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УДК 539.3Equation Section 1 

АНАЛІТИЧНИЙ РОЗРАХУНОК БАЛОК ЗМІННОЇ 

ЖОРСТКОСТІ НА НЕОДНОРІДНІЙ ПРУЖНІЙ ОСНОВІ 

ВІНКЛЕРА 

Крутій Ю. С.1, Перпері А. О.1, Вакуленко В. В.1, Ковальова І. Л.1 

1Одеська державна академія будівництва та архітектури  

Анотація: Ціллю дослідження є подальший розвиток аналітичних методів розрахунку на 

згин балок, що опираються на неоднорідну (змінну) суцільну пружну основу Вінклера. 

Неоднорідність основи характеризується змінним погонним коефіцієнтом постелі. У даній 

роботі розглядається узагальнений випадок, коли згинальна жорсткість, коефіцієнт постелі та 

навантаження задаються будь-якими неперервними функціями від координати серединної лінії 

балки. Виписані точні формули для фундаментальних функцій та частинного розв’язку 

відповідного диференціального рівняння четвертого порядку зі змінними коефіцієнтами. Дані 

функції є безрозмірними та представляються абсолютно і рівномірно збіжними рядами по 

степеням безрозмірного параметру зі змінними коефіцієнтами, які визначаються за допомогою 

рекурентних інтегральних співвідношень. В свою чергу, через вказані функції виражаються 

формули для параметрів напружено-деформованого стану (НДС) балки – прогину, кута 

повороту, згинального моменту та поперечної сили. Невідомі константи інтегрування в цих 

формулах виражені через початкові параметри, які знаходяться після реалізації заданих 

граничних умов. Для зручності практичного застосування фундаментальні функції та 

частинний розв’язок рівняння трансформуються до формату степеневих рядів. Тим самим, 

розрахунок балки на згин зводиться до процедури чисельної реалізації явних аналітичних 

формул для параметрів НДС. Для реалізації отриманих формул створено програмний код на 

Visual Basic в програмному середовищі Excel. Тим самим, забезпечено можливість розрахунку 

балок у програмному режимі. 

На прикладі продемонстровано практичне застосування отриманих розв’язків. Виконані 

розрахунки для балки з вільними кінцями у вигляді зрізаної піраміди, ширина та висота якої 

змінюються за лінійними законами. Результати розрахунку представлені в чисельному та 

графічному форматах. Отримані чисельні значення є точними, оскільки запропонований підхід 

ґрунтується на точному розв’язку відповідного диференціального рівняння. Наявність таких 

розв’язків дозволяє шляхом порівняння оцінювати точність розв’язків, отриманих за 

допомогою різного роду наближених методів.  

Ключові слова: балка, змінна згинальна жорсткість, неоднорідна пружна основа, гіпотеза 

Вінклера, змінне навантаження, точний розв’язок, аналітичний розрахунок. 
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Abstract: The aim of the study is to further develop analytical methods for the bending analysis 

of beams resting on an inhomogeneous (variable) continuous Winkler elastic foundation. The 

inhomogeneity of the foundation is characterized by a spatially varying bedding (subgrade reaction) 

modulus. This work considers a generalized case in which the flexural rigidity, foundation modulus, 

and external loading are defined as arbitrary continuous functions of the coordinate along the beam’s 

centerline. Exact expressions are derived for the fundamental functions and a particular solution of the 

corresponding fourth-order differential equation with variable coefficients. These functions are 
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dimensionless and are represented as absolutely and uniformly convergent power series in a 

dimensionless parameter, with variable coefficients determined using recurrent integral relations. The 

stress–strain state (SSS) parameters of the beam–deflection, rotation angle, bending moment, and 

shear force–are expressed through the aforementioned functions. The unknown integration constants 

in these expressions are determined from the prescribed boundary conditions. For practical 

application, both the fundamental functions and the particular solution are transformed into a power 

series format. As a result, the bending analysis of the beam reduces to a numerical implementation of 

explicit analytical formulas for the SSS parameters. A software implementation of the derived 

formulas was developed using Visual Basic within the Excel environment, thus enabling beam 

analysis in a computational mode.  

A practical example is provided to demonstrate the application of the obtained solutions. 

Calculations are performed for a beam with free ends shaped as a truncated pyramid, whose width and 

height vary linearly. The results are presented both numerically and graphically. The obtained 

numerical values are exact, as the proposed approach is based on an exact solution to the 

corresponding differential equation. The availability of such solutions allows for the assessment of the 

accuracy of approximate methods by direct comparison. 

Keywords: beam, variable flexural rigidity, inhomogeneous elastic foundation, Winkler 

foundation hypothesis, variable loading, exact solution, analytical analysis. 
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1 ВСТУП 

Конструкція, що являє собою балку на пружній основі, часто застосовується в 

інженерній практиці, в тому числі, в будівництві, в залізничній та гірничодобувній 

галузях, гідротехніці, кораблебудуванні, аерокосмічній техніці, біомеханіці та інших.  

Взаємодія між конструкціями та опорними ґрунтовими середовищами має 

вирішальне значення в проектуванні фундаментів і завжди привертала увагу як 

науковців, так і інженерів. Проектування та будівництво безпечних будівель і споруд 

вимагає точного моделювання взаємодії конструкції з ґрунтовою основою [1-6]. Тому 

найбільш поширені балочні конструкції на пружній основі саме в будівництві та 

цивільній інженерії. До таких конструкцій можуть бути віднесені стрічкові фундаменти 

будівель та споруд, фундаменти гребель, доки, фундаменти підкранових колій, шпали 

залізничної колії, різного роду трубопроводи, укладені на ґрунт та ін. При проектуванні 

тунелів та підземних трубопроводів модель балки на пружному фундаменті широко 

використовується для аналізу деформації конструкції, що зумовлена осіданням ґрунту 

[7-10]. В гірничодобувній галузі модель конструкції на пружній основі застосовується 

для визначення тиску в контакті між гірничими опорами та опорною стінкою [11]. При 

проектуванні залізничних колій та при вивченні їх поведінки під час руху поїзда також 

зазвичай застосовують модель балки на пружному фундаменті [12-18]. 

З числа існуючих моделей основи [5, 6, 19] значного поширення набула так звана 

модель Вінклера (гіпотеза коефіцієнта постелі). У цій моделі пружна основа, на яку 

опирається конструкція, представляється у вигляді набору вертикальних, близько 

розташованих, не пов’язаних між собою пружин. Таку ситуацію загалом можна 

описати єдиним параметром, який називають коефіцієнтом (модулем) пружності 

основи чи коефіцієнтом постелі. У найпростішому випадку, коли основа вважається 

однорідною, коефіцієнт постелі є сталим.  

Вважається, що Вінклерова основа є найбільш прийнятною для практичних цілей 

за умови правильного вибору чисельного значення коефіцієнту жорсткості основи та 

врахування в необхідних випадках його змінності [3]. Результати розрахунку 

конструкцій з використанням цієї моделі близько відповідають дослідним даним [3]. 

Про необхідність враховувати змінність (неоднорідність) основи також наголошується 

в сучасній публікації [20], оскільки на погляд авторів припущення про однорідність 

основи далеке від реальності. 

Існує ряд модифікацій моделі Вінклера, які в інтегральній формі дозволяють 

враховувати неоднорідні властивості пружної основи. Найбільш розповсюдженою 

модифікацією є модель змінного коефіцієнта постелі. Зокрема, така модель знайшла 

широке застосування при розрахунках напружено-деформованого стану фундаментів 

конструкцій, які лежать на лесових ґрунтах, для яких характерне просідання. У такому 

випадку коефіцієнт постелі – це змінна величина, яка залежить від координати, в якій 

визначається осадка поверхні основи. 

Змінною також може бути і згинальна жорсткість балки. Непризматичні балки зі 

змінним поперечним перерізом мають велике значення в інженерії завдяки своїй 

здатності відповідати архітектурним вимогам та оптимізувати вагу та міцність 

конструкцій [21]. Подібні балки також можуть використовуватись з метою економії 

матеріалів. Ще один сенс застосування таких балок полягає в тому, що навантаження 

часто нерівномірно розподіллено уздовж довжини конструкції. Згинальна жорсткість 

для вказаних балок буде змінною величиною.  

У будівельній галузі широке застосування отримали залізобетонні балки. Після 

утворення тріщин у перерізах під дією навантаження, у таких балках утворюються 
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ділянки зі зниженою згинальною жорсткістю [5, 22]. У зв’язку з цим жорсткість стає 

змінною уздовж довжини балки. 

Останнім часом широке застосування у різних галузях науки і техніки знаходять 

конструкції із функціонально-градієнтних матеріалів [23-28]. Серед різноманіття 

функціонально-градієнтних конструкцій, важливим класом є балки з властивостями 

матеріалу, які змінюються уздовж довжини [29]. Такому новому поколінню композитів 

властиві змінні характеристиками, такі як пружність, щільність, теплопровідність і т.д. 

Згинальна жорсткість таких балок також буде змінною уздовж довжини. 

Задача про статичний розрахунок балок сталої жорсткості, що опираються на 

однорідну пружну основу Вінклера, загалом добре вивчена. Застосування відповідних 

розв’язків в інженерній практиці не викликає труднощів. Набагато складніше справа, 

коли згинальна жорсткість балки та/або коефіцієнт постелі змінні. Універсальний 

аналітичний методу розрахунку для такого випадку в науковій літературі відсутній. 

Ймовірною причиною може бути той факт, що з математичної точки зору задача 

зводиться до необхідності розв’язання диференціального рівняння згину четвертого 

порядку зі змінними коефіцієнтами. Знаходження загального інтегралу для такого 

рівняння є складною математичною проблемою. Відома лише обмежена кількість 

окремих випадків, коли розв’язки знаходиться в замкненій формі [2, с. 108–114, 30, с. 

203, 204]. 

Отже, знаходження точного розв’язку диференціального рівняння згину зі 

змінними коефіцієнтами та розробка на його основі аналітичного методу розрахунку 

балок є актуальною. Оскільки в даній роботі реалізовано саме такий підхід, то її тема 

актуальна. 

2 АНАЛІЗ ЛІТЕРАТУРНИХ ДАНИХ ТА ПОСТАНОВКА ПРОБЛЕМИ 

Детальний огляд публікацій про статичний розрахунок балок на неоднорідній 

(змінній) пружній основі надано в публікаціях [31, 32, 33]. Щодо балок сталої 

жорсткості на змінній пружній основі Вінклера найбільш узагальнену ситуацію 

розглянуто у роботі [33], де запропоновано аналітичний метод розрахунку для випадку 

довільного неперервно-змінного коефіцієнту постелі. Також в значній кількості 

публікацій розглядаються випадки балок змінної жорсткості на однорідній пружній 

основі, серед яких виділимо [34-38]. Натомість публікації, в яких одночасно згинальна 

жорсткість балки та коефіцієнт постелі вважаються змінними, в науковій періодиці 

зустрічаються рідко [39-43] . При цьому узагальнена ситуація, коли діюче на балку 

навантаження також буде змінним, трактується як найбільш складна [44].  

У роботі [39] розроблено простий скінченний елемент балки на пружному 

фундаменті з використанням поліноміальної функції переміщення, який дає змогу 

визначати значення прогину та згинального моменту для призматичних або 

непризматичних балок, що опираються на фундаменти зі змінними або нелінійними 

реакціями пружної основи. У публікації [40] розроблено нову модель ґрунтової основи 

для ймовірнісного аналізу МСЕ гнучкої балки, що опирається на просторово-

випадковий неоднорідний ґрунт, який моделюється методом Монте-Карло. Фактично, 

ця робота стосується оцінки впливу випадкових параметрів ґрунту на реакцію балки, 

що опирається на неоднорідний фундамент Вінклера-Пастернака. Рівняння руху були 

отримані з використанням співвідношень фон-Кармана та були розв’язані за 

допомогою ітераційного методу Ньютона-Рафсона. Новизною дослідження є те, що тут 

враховується неоднорідність ґрунту, неоднорідність балки та ефект зсуву. Встановлено, 

що змінність параметрів ґрунту мають значний вплив на реакцію конструкції. У статті 

[41] представлено новий ефективний метод оцінки точних матриць жорсткості та маси 

неоднорідної балки Бернуллі-Ейлера, що лежить на пружному фундаменті Вінклера. 
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Неоднорідність може виникати внаслідок змінного перерізу та/або за рахунок змінного 

модуля пружності матеріалу балки. Припускається, що різкі зміни у перерізі балки 

відсутні. Ключовим моментом методу є оцінка двох ідеальних навантажень, що в цій 

роботі досягається шляхом апроксимації їх двома поліномами. А конкретніше, осьове 

навантаження апроксимоване лінійним поліномом, а поперечне – кубічним поліномом. 

Чисельна реалізація методу є простою, а результати добре корелюють з тими, що 

отримані з точних розв’язків, доступних у літературі. У роботі [42] представлено 

розв’язок граничного інтегрального рівняння для задачі про згин неоднорідних балок, 

що опираються на неоднорідний три-параметричний пружний фундамент. Модель 

фундаменту включає параметри Вінклера та Пастернака. Оскільки властивості 

поперечного перерізу балки змінюються вздовж її довжини, отримані диференціальні 

рівняння мають змінні коефіцієнти, що значно ускладнює математичну задачу. 

Розв’язок рівнянь досягається за допомогою методу аналогових рівнянь Кацікаделіса. 

Кілька балок аналізуються за різних граничних умов та розподілів навантаження, що 

ілюструє метод та демонструє його ефективність і точність. У дослідженні [43] 

запропоновано новий метод статичного аналізу нескінченної неоднорідної балки, що 

опирається на змінну пружну основу та знаходиться під дією зовнішніх навантажень. 

Для цього виведено відповідне інтегральне рівняння, яке еквівалентне вихідному 

диференціальному рівнянню. Використовуючи інтегральне рівняння, розроблено новий 

функціонально-ітераційний метод як загальний підхід до змінного поперечного 

перерізу балки. Запропонований метод є досить простим і легким у застосуванні. 

Наведено ілюстративний приклад для перевірки достовірності запропонованого 

методу. Автори стверджують, що для точного розв’язку потрібно лише кілька ітерацій.  

Отже, аналіз публікацій підтверджує актуальність розробки аналітичного методу 

розрахунку балок при довільних неперервних змінних згинальній жорсткості, 

коефіцієнті постелі та навантаження. 

3 ЦІЛЬ ТА ЗАДАЧІ ДОСЛІДЖЕННЯ 

Ціль дослідження – подальший розвиток аналітичних методів розрахунку балок 

змінної жорсткості на неоднорідній пружній основі. 

Задачі дослідження: 

1. Отримати точні формули для параметрів НДС балки з довільною неперервною 

змінною згинальною жорсткістю, що опирається на неперервно-змінну пружну основу 

Вінклера; 

2. Виконати аналітичний розрахунок реальної балочної конструкції. 

4 РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ 

Розглядається задача про статичний розрахунок балки з довільною неперервною 

змінною згинальною жорсткістю ( ) ( )E x I x , що опирається на суцільну неоднорідну 

пружну основу, для якої прийнято гіпотезу Вінклера. На рис. 1 представлено 

розрахункову схему балки, де ( )q x   задане розподілене змінне поперечне 

навантаження, ( )y x   прогин (просадка основи), ( )x   кут повороту. На рис. 2 

показані внутрішні зусилля, які виникають у поперечних перерізах балки, а саме, 

згинальний момент ( )M x  та поперечна сила ( )Q x . 

https://www.sciencedirect.com/topics/physics-and-astronomy/operators-mathematics
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Рис. 1. Розрахункова схема балки Рис. 2. Внутрішні зусилля 

 

Неоднорідність пружної основи характеризується змінним погонним коефіцієнтом 

постелі, який у загальному випадку може являти собою будь-яку неперервну функцію. 

Для згинальної жорсткості ( ) ( )E x I x , коефіцієнта постелі ( )k x  та навантаження 

( )q x приймаємо форму запису:  

0 0 0 0( ) ( ) ( ); ( ) ( ); ( ) ( )E x I x E I A x k x k B x q x q C x   , (1) 

де 0 0 0 0, ,E I k q   значення відповідних величин у певній характерній точці балки 

(наприклад, в точці 0x  ), ( ), ( ), ( )A x B x C x   безрозмірні неперервні функції, що 

виражають закони зміни своїх величин уздовж довжини балки.  

Диференціальне рівняння згину балки [45] у нашому випадку набуває вигляду 

0 0 0 0( ( ) ( )) ( ) ( ) ( )E I A x y x k B x y x q C x    . (2) 

Після знаходження з цього рівняння функції прогинів ( )y x , решта параметрів стану 

знайдуться за допомогою диференціальних залежностей, відомих з теорії згину балок: 

0 0 0 0( ) ( ); ( ) ( ) ( ); ( ) ( ( ) ( ))x y x M x E I A x y x Q x E I A x y x         . (3) 

Точний розв’язок диференціального рівняння (2) можна знайти за допомогою 

методу прямого інтегрування, який розвинуто в [46]. Зокрема, в [33] побудовано 

точний розв’язок (2) для випадку сталої жорсткості балки. При цьому, як і в даній 

статті, неоднорідність основи там також характеризується довільним неперервно-

змінним коефіцієнтом постелі. Щоб не повторювати однотипну процедуру методу 

прямого інтегрування, запишемо тільки кінцеві формули, якими визначається точний 

розв’язок рівняння (2): 

42 3

0
1 2 3 4 5

0 0 0 0 0 0

( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) ( )
q ll l

y x y X x l X x M X x Q X x X x
E I E I E I

     ; (4) 

2 3

,0 ,1 ,2 ,3 )( ) ( ) ( ) ( ( ( 1) ,2,3,4,5) ...n n n n nX x K nx K x x K x         ; (5) 

4

0

0 0

k l
K

E I
 ; 

1 3

,0 ,0 2

0 0

1 1
( ) ( 1,2); ( ) ( 3,4)

( )

x xn n

n n

x x
x n x dxdx n

l l A x l
 

 

         
     ; (6) 

5,0 4

0 0 0 0

1 1
( ) ( )

( )

x x x x

x C x dxdxdxdx
l A x

      ; (7) 
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, , 14

0 0 0 0

1 1
( ) ( ) ( ) ( 1,2,3,4,5) ( 1,2,3,...)

( )

x x x x

n k n kx B x x dxdxdxdx n k
l A x

        . (8) 

Важливо зауважити, що функції (5) безрозмірні [46]. Константи інтегрування в 

загальному розв’язку (4) виражені через початкові параметри (0), (0), (0), (0)y M Q , 

для визначення яких слугуватимуть задані граничні умови.  

Підставляючи (4) в рівності (3), отримаємо формули для визначення інших 

параметрів НДС балки: 

32

0
1 2 3 4 5

0 0 0 0 0 0

1
( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) ( )

q ll l
x y X x X x M X x Q X x X x

l E I E I E I
      ; (9) 

20 0 0 0
1 2 3 4 0 52

( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) ( )
E I E I

M x y X x X x M X x Q lX x q l X x
l l

      ; (10) 

0 0 0 0
1 2 3 4 0 53 2

1ˆ ˆ ˆ ˆ ˆ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) ( )
E I E I

Q x y X x X x M X x Q X x q l X x
l l l

      , (11) 

де  
2 3ˆ( ) ( ); ( ) ( ) ( ); ( ) ( ( ) ( )) ( 1,2,3,4,5)n n n n n nX x lX x X x l A x X x X x l A x X x n         

– безрозмірні функції [46]. 

Для зручності практичної реалізації наведених формул, апроксимуємо задані 

функції ( ) 1 ( )f x A x , ( )B x , ( )С x  рядами Маклорена: 

2

0 1 2( ) ... ...
j

j

x x x
f x A A A

l l l
A               

     
 ; (12) 

2

0 1 2( ) ... ...
j

j

x x x
B x B B B

l l l
B               

     
 ; (13) 

2

0 1 2( ) ... ...
j

j

x x x
C x C C C C

l l l
              
     

 . (14) 

Після цього, враховуючи (6)-(8), (12)-(14), формули (5) трансформуються до степеневих 

рядів 

1 4

, ,

0 0

( ) ( ) ( 1,2,3,4,5)

n k j

k

n n k j

k j

x x
X x K c n

l l

  

 

   
     
   

 , (15) 

де 

,0,0 ,0,1; 0 ( 1,2) ( 1,2,3,...)n n jc c n j    ; (16) 

,0, ( 3,4)( 0,1,2,...)
( 2)( 1)

j

n j

A
c n j

n j n j
  

   
; (17) 

0

5,0,

1
( 0,1,2,...)

( 3)( 4) ( 1)( 2)

j
j

j

i i

i

с
A C

j
j j i i






   

  ; (18) 

1

, ,

, ,

0

0
( 4 4

.

4

1

( 4

(

)(2)( 4 1)

( 1,2,3,4,5) ( 1,2,3,...) 0,1,2,...)

3)

i

j i i s n k sj

s
j

i

n kс
nn k j

j

A B c

n k i kk j

n k

in

  




    


     

  




  (19) 
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Таким чином, формулами (4), (9)-(19) забезпечена можливість аналітичних 

розрахунків балок для узагальненого випадку, коли жорсткість балки, коефіцієнт 

постелі та навантаження можуть задаватись будь-якими неперервними функціями , що 

залежать від координати серединної осі балки. 

Для реалізації отриманих формул створено відповідний програмний код на Visual 

Basic в програмному середовищі Excel. Тим самим, забезпечено можливість розрахунку 

балок у програмному режимі. 

Приклад розрахунку 

Розглянемо балку з вільними кінцями у вигляді зрізаної піраміди, ширина та висота 

якої змінюються за такими лінійними законами (рис. 3): 

0 0 0 0( ) ( ) ; ( ) ( )l l

x x
b x b b b h x h h h

l l
      . (20) 

 
Рис. 3. Розрахункова схема балки 

Балка опирається на параболічно-змінну пружну основу  

2
(0) 1

( ) 1 4 1 , 0
2 ( 2) 2 2

kl x l
k x k k

k l l

                
      

 (21) 

та знаходиться під дією лінійно-змінного навантаження: 

( )
( ) (0) 1 1 , (0) 0

(0)

q l x
q x q q

q l

  
     

  
.  (22) 

Задані граничні умови запишуться так: (0) 0; (0) 0; ( ) 0; ( ) 0M Q M l Q l    . Отже, 

два початкові параметри (0), (0)M Q  уже відомі. Інші два (0), (0)y   знайдемо із 

системи рівнянь, яку отримаємо після реалізації граничних умов на правому кінці x l , 

скориставшись (10), (11). В підсумку одержимо: 

4 3

0 2 5 2 5 0 1 5 1 5

0 0 0 01 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
(0) ; (0)

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

q l X l X l X l X l q l X l X l X l X l
y

E I E IX l X l X l X l X l X l X l X l


 
  

 
. 
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Модуль пружності матеріалу балки вважаємо сталим. В такому разі, користуючись 

формулою для моменту інерції прямокутного перерізу та враховуючи (20), для 

жорсткості балки будемо мати: 

33

0 0

0 0( ) ( ); ; ( ) 1 (1 ) 1 (1 )
12

b h x x
EI x EI A x I A x

l l
 

  
        

  
, 

де 

0 0

0 0

, 0; , 0l l
l l

b h
b b h h

b h
       . 

Отже,  

1 3

( ) 1 (1 ) 1 (1 )
x x

f x
l l

 

 

   
       
   

. 

З метою визначення коефіцієнтів ряду (12), запишемо спочатку відповідні ряди для 

множників функції ( )f x . Скориставшись формулою Ньютона для бінома з довільним 

дійсним показником степеня  , яка має вигляд [47] 

2 3( 1) ( 1)( 2)
(1 ) 1 ...

1! 2! 3!
x x x x        

      , 

будемо мати: 

1 3

0 0

1 (1 ) (1 ) ; 1 (1 )
j j

j

j

j j

x x x x

l l l l
   

  

 

                    
       

  , (23) 

де 

0 1

3
1, (1 ) ( 0,1,2,...)

1j j

j
j

j
   


   


. 

Перемноживши ряди (23), отримаємо 

0 0

( ) (1 )
jj

j k

k

j k

x
f x

l
 




 

      
  

  . 

Зіставляючи даний ряд з рядом (12), визначаємо коефіцієнти: 

0 0

0

; (1 ) ( 1,2,3,...)
j

j k

j k

k

A A j  



    . 

Залишилось визначити коефіцієнти рядів (13), (14). Співставляючи формули (21), 

(22) з (1), знаходимо: 

2

0 0

(0) ( )1
; ( ) 1 4 1 ; (0); ( ) 1 1

2 ( 2) 2 (0)

k q ll x x
k k B x q q C x

k l l q l

                      
       

. 

Звідси легко визначити шукані коефіцієнти:  

0 1

( )
1; 1 ; 0 ( 2,3,4,...)

(0)
j

q l
C C C j

q

 
      

 
. 
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0 1 2

(0) (0) (0
0 ( 3,4,5,...)

)
; 4 1 ; 4 1 ;

( 2) ( 2) ( 2) j
k k k

B BB B
k l k l k l

j
   

      



  

. 

Вихідні дані: 

Матеріал балки – бетон, 71,5 10E кПа  ; 

Довжина балки 5l м ;  

Ширина підошви лівого кінця 0 0,4b м ; 

Ширина підошви правого кінця 0,2lb м ;  

Висота лівого кінця 0 0,6h м ; Висота правого кінця 0,3lh м ; 

3 2(0) ( ) 2 10 /k k l кН м   ; 3 2( / 2) 4 10 /k l кН м  ;  

(0) 120 /q кН м ; ( ) 50 /q l кН м . 

Результати розрахунків наведено в табл. 1 та на рис. 4, 5. 

Таблиця 1 

Значення параметрів НДС балки 

x  ( ), [ ]y x мм  ( ), [ ]x рад  ( ), [ ]M x кНм  ( ), [ ]Q x кН  

0 39,029975 -0,005822 0,000000 0,000000 

0,25 37,574618 -0,005821 -1,148871 -8,571606 

0,5 36,120111 -0,005814 -4,003043 -13,748596 

0,75 34,668549 -0,005796 -7,791624 -16,145504 

1 33,223231 -0,005763 -11,891618 -16,330698 

1,25 31,788468 -0,005711 -15,816193 -14,824897 

1,5 30,369365 -0,005638 -19,202603 -12,099871 

1,75 28,971573 -0,005541 -21,799827 -8,577554 

2 27,601011 -0,005420 -23,456064 -4,629788 

2,25 26,263558 -0,005276 -24,106257 -0,578848 

2,5 24,964713 -0,005111 -23,759862 3,301131 

2,75 23,709230 -0,004930 -22,489087 6,781785 

3 22,500724 -0,004737 -20,417843 9,677233 

3,25 21,341269 -0,004539 -17,711622 11,839985 

3,5 20,230995 -0,004345 -14,568471 13,156247 

3,75 19,167737 -0,004164 -11,211195 13,540951 

4 18,146778 -0,004008 -7,880777 12,932938 

4,25 17,160815 -0,003886 -4,830946 11,290845 

4,5 16,200318 -0,003805 -2,323600 8,590346 

4,75 15,254586 -0,003767 -0,624693 4,823397 

5 14,314031 -0,003760 0,000000 0,000000 
 

  

Рис. 4. Епюри кінематичних параметрів  
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Рис. 5. Епюри силових параметрів 

5 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ 

Наведена розробка є логічним продовженням досліджень, започаткованих в 

публікації [33]. По суті, мова йде про поширення отриманих в [33] точних розв’язків на 

випадок змінної неперервної згинальної жорсткості балки. Оскільки отримані кінцеві 

розрахункові формули ґрунтується на точному розв’язку диференціального рівняння, 

то отримані результати розрахунку слід трактувати як точні. Такі розв’язки є особливо 

цінними, адже вони можуть служити критеріями, по яким можна оцінювати точність 

різного роду наближених розв’язків.  

6 ВИСНОВКИ 

1. Отримані точні формули для статичного розрахунку балок у випадку, коли 

згинальна жорсткість, коефіцієнт постелі та навантаження задаються будь-якими 

неперервними функціями. Такі формули дозволяють отримати більш достовірну 

картину НДС балки порівняно з наближеними методами. 

2. Запропонований підхід є ефективним у обчислювальному відношенні та дає 

можливість отримувати точні результати для статичних розрахунків балок зі змінними 

параметрами. Він не потребує дискретизації конструкції та є реальною альтернативою 

застосуванню наближених методів при розв’язання даного класу задач.  

3. Впровадження авторського підходу в інженерну практику забезпечить більшу 

точність розрахунків. 
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